前言
RunLoop
是 iOS
和 OSX
开发中非常基础的一个概念,这篇文章将从CFRunLoop
的源码入手,介绍 RunLoop
的概念以及底层实现原理。之后会介绍一下在 iOS
中,苹果是如何利用RunLoop
实现自动释放池、延迟回调、触摸事件、屏幕刷新等功能的。
本文内容
- RunLoop 的概念
- RunLoop 与线程的关系
- RunLoop 对外的接口
- RunLoop 的 Mode
- RunLoop 的内部逻辑
- RunLoop 的底层实现
- 苹果用 RunLoop 实现的功能
- AutoreleasePool
- 事件响应
- 手势识别
- 界面更新
- 定时器
- PerformSelecter
- 关于GCD
- 关于网络请求
- RunLoop 的实际应用举例
- AFNetworking
- AsyncDisplayKit
RunLoop 的概念
一般来讲,一个线程一次只能执行一个任务,执行完成后线程就会退出。如果我们需要一个机制,让线程能随时处理事件但并不退出,通常的代码逻辑是这样的:
1
2
3
4
5
6
7
function loop() {
initialize();
do {
var message = get_next_message();
process_message(message);
} while (message != quit);
}
这种模型通常被称作 Event Loop。 Event Loop
在很多系统和框架里都有实现,比如 Node.js
的事件处理,比如 Windows
程序的消息循环,再比如 OSX/iOS
里的 RunLoop
。实现这种模型的关键点在于:如何管理事件/消息
,如何让线程在没有处理消息时休眠以避免资源占用、在有消息到来时立刻被唤醒。
所以,RunLoop
实际上就是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行上面 Event Loop
的逻辑。线程执行了这个函数后,就会一直处于这个函数内部 “接受消息
->等待->
处理” 的循环中,直到这个循环结束(比如传入
quit` 的消息),函数返回。
OSX/iOS
系统中,提供了两个这样的对象:NSRunLoop
和 CFRunLoopRef
。
CFRunLoopRef
是在 CoreFoundation
框架内的,它提供了纯 C
函数的 API
,所有这些 API
都是线程安全的。
NSRunLoop
是基于 CFRunLoopRef
的封装,提供了面向对象的 API
,但是这些 API
不是线程安全的。
CFRunLoopRef 的代码是开源的,你可以在这里 http://opensource.apple.com/tarballs/CF/ 下载到整个 CoreFoundation
的源码来查看。
(Update: Swift 开源后,苹果又维护了一个跨平台的 CoreFoundation 版本:https://github.com/apple/swift-corelibs-foundation/,这个版本的源码可能和现有iOS
系统中的实现略不一样,但更容易编译,而且已经适配了Linux/Windows
。)
RunLoop 与线程的关系
首先,iOS
开发中能遇到两个线程对象: pthread_t
和 NSThread
。过去苹果有份文档标明了 NSThread
只是 pthread_t
的封装,但那份文档已经失效了,现在它们也有可能都是直接包装自最底层的 mach thread
。苹果并没有提供这两个对象相互转换的接口,但不管怎么样,可以肯定的是 pthread_t
和 NSThread
是一一对应的。比如,你可以通过 pthread_main_thread_np()
或 [NSThread mainThread]
来获取主线程;也可以通过 pthread_self()
或 [NSThread currentThread]
来获取当前线程。CFRunLoop
是基于 pthread
来管理的。
苹果不允许直接创建 RunLoop
,它只提供了两个自动获取的函数:CFRunLoopGetMain()
和 CFRunLoopGetCurrent()
。 这两个函数内部的逻辑大概是下面这样:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef
static CFMutableDictionaryRef loopsDic;
/// 访问 loopsDic 时的锁
static CFSpinLock_t loopsLock;
/// 获取一个 pthread 对应的 RunLoop。
CFRunLoopRef _CFRunLoopGet(pthread_t thread) {
OSSpinLockLock(&loopsLock);
if (!loopsDic) {
// 第一次进入时,初始化全局Dic,并先为主线程创建一个 RunLoop。
loopsDic = CFDictionaryCreateMutable();
CFRunLoopRef mainLoop = _CFRunLoopCreate();
CFDictionarySetValue(loopsDic, pthread_main_thread_np(), mainLoop);
}
/// 直接从 Dictionary 里获取。
CFRunLoopRef loop = CFDictionaryGetValue(loopsDic, thread));
if (!loop) {
/// 取不到时,创建一个
loop = _CFRunLoopCreate();
CFDictionarySetValue(loopsDic, thread, loop);
/// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。
_CFSetTSD(..., thread, loop, __CFFinalizeRunLoop);
}
OSSpinLockUnLock(&loopsLock);
return loop;
}
CFRunLoopRef CFRunLoopGetMain() {
return _CFRunLoopGet(pthread_main_thread_np());
}
CFRunLoopRef CFRunLoopGetCurrent() {
return _CFRunLoopGet(pthread_self());
}
从上面的代码可以看出,线程和RunLoop
之间是一一对应的,其关系是保存在一个全局的 Dictionary
里。线程刚创建时并没有 RunLoop
,如果你不主动获取,那它一直都不会有。RunLoop
的创建是发生在第一次获取时,RunLoop
的销毁是发生在线程结束时。你只能在一个线程的内部获取其 RunLoop
(主线程除外).
RunLoop 对外的接口
在 CoreFoundation
里面关于 RunLoop
有5个类:
CFRunLoopRef
CFRunLoopModeRef
CFRunLoopSourceRef
CFRunLoopTimerRef
CFRunLoopObserverRef
其中 CFRunLoopModeRef
类并没有对外暴露,只是通过 CFRunLoopRef
的接口进行了封装。他们的关系如下:
一个 RunLoop
包含若干个 Mode
,每个 Mode
又包含若干个 Source
/Timer
/Observer
。每次调用 RunLoop
的主函数时,只能指定其中一个 Mode
,这个Mode
被称作 CurrentMode
。如果需要切换 Mode
,只能退出 Loop
,再重新指定一个 Mode
进入。这样做主要是为了分隔开不同组的 Source
/Timer
/Observer
,让其互不影响。
CFRunLoopSourceRef 是事件产生的地方。Source
有两个版本:Source0
和 Source1
。
Source0
只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用CFRunLoopSourceSignal(source)
,将这个Source
标记为待处理,然后手动调用CFRunLoopWakeUp(runloop)
来唤醒RunLoop
,让其处理这个事件。Source1
包含了一个mach_port
和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种Source
能主动唤醒RunLoop
的线程,其原理在下面会讲到。
CFRunLoopTimerRef 是基于时间的触发器,它和 NSTimer
是toll-free bridged
的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到 RunLoop
时,RunLoop
会注册对应的时间点,当时间点到时,RunLoop
会被唤醒以执行那个回调。
CFRunLoopObserverRef 是观察者,每个 Observer
都包含了一个回调(函数指针),当 RunLoop
的状态发生变化时,观察者就能通过回调接受到这个变化。可以观测的时间点有以下几个:
1
2
3
4
5
6
7
8
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
kCFRunLoopEntry = (1UL << 0), // 即将进入Loop
kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理 Timer
kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source
kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
kCFRunLoopAfterWaiting = (1UL << 6), // 刚从休眠中唤醒
kCFRunLoopExit = (1UL << 7), // 即将退出Loop
};
上面的 Source
/Timer
/Observer
被统称为 __mode item__
,一个 item
可以被同时加入多个mode
。但一个 item
被重复加入同一个 mode
时是不会有效果的。如果一个 mode
中一个 item
都没有,则 RunLoop
会直接退出,不进入循环。
RunLoop 的 Mode
CFRunLoopMode
和 CFRunLoop
的结构大致如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
struct __CFRunLoopMode {
CFStringRef _name; // Mode Name, 例如 @"kCFRunLoopDefaultMode"
CFMutableSetRef _sources0; // Set
CFMutableSetRef _sources1; // Set
CFMutableArrayRef _observers; // Array
CFMutableArrayRef _timers; // Array
...
};
struct __CFRunLoop {
CFMutableSetRef _commonModes; // Set
CFMutableSetRef _commonModeItems; // Set<Source/Observer/Timer>
CFRunLoopModeRef _currentMode; // Current Runloop Mode
CFMutableSetRef _modes; // Set
...
};
这里有个概念叫 “CommonModes
”:一个 Mode
可以将自己标记为”Common
”属性(通过将其 ModeName
添加到 RunLoop
的 “commonModes
” 中)。每当 RunLoop
的内容发生变化时,RunLoop
都会自动将 _commonModeItems
里的 Source
/Observer
/Timer
同步到具有 “Common
” 标记的所有Mode
里。
应用场景举例:主线程的 RunLoop
里有两个预置的 Mode
:kCFRunLoopDefaultMode
和 UITrackingRunLoopMode
。这两个 Mode
都已经被标记为”Common
”属性。DefaultMode
是 App
平时所处的状态,TrackingRunLoopMode
是追踪 ScrollView
滑动时的状态。当你创建一个Timer
并加到 DefaultMode
时,Timer
会得到重复回调,但此时滑动一个TableView
时,RunLoop
会将 mode
切换为 TrackingRunLoopMode
,这时 Timer
就不会被回调,并且也不会影响到滑动操作。
有时你需要一个Timer
,在两个 Mode
中都能得到回调,一种办法就是将这个 Timer
分别加入这两个 Mode
。还有一种方式,就是将 Timer
加入到顶层的 RunLoop
的 “commonModeItems
” 中。”commonModeItems
” 被 RunLoop
自动更新到所有具有”Common
”属性的 Mode
里去。
CFRunLoop
对外暴露的管理 Mode
接口只有下面2个:
1
2
CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName);
CFRunLoopRunInMode(CFStringRef modeName, ...);
Mode
暴露的管理 mode item
的接口有下面几个:
1
2
3
4
5
6
CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
你只能通过 mode name
来操作内部的 mode
,当你传入一个新的 mode name
但 RunLoop
内部没有对应 mode
时,RunLoop
会自动帮你创建对应的 CFRunLoopModeRef
。对于一个 RunLoop
来说,其内部的 mode
只能增加不能删除。
苹果公开提供的 Mode
有两个:kCFRunLoopDefaultMode
(NSDefaultRunLoopMode
) 和 UITrackingRunLoopMode
,你可以用这两个 Mode Name
来操作其对应的Mode
。
同时苹果还提供了一个操作 Common
标记的字符串:kCFRunLoopCommonModes
(NSRunLoopCommonModes
),你可以用这个字符串来操作 Common Items
,或标记一个 Mode
为 “Common
”。使用时注意区分这个字符串和其他 mode name
。
RunLoop 的内部逻辑
根据苹果在文档里的说明,RunLoop
内部的逻辑大致如下:
其内部代码整理如下 (太长了不想看可以直接跳过去,后面会有说明)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/// 用DefaultMode启动
void CFRunLoopRun(void) {
CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
}
/// 用指定的Mode启动,允许设置RunLoop超时时间
int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) {
return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
}
/// RunLoop的实现
int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) {
/// 首先根据modeName找到对应mode
CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false);
/// 如果mode里没有source/timer/observer, 直接返回。
if (__CFRunLoopModeIsEmpty(currentMode)) return;
/// 1. 通知 Observers: RunLoop 即将进入 loop。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry);
/// 内部函数,进入loop
__CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) {
Boolean sourceHandledThisLoop = NO;
int retVal = 0;
do {
/// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
/// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
/// 执行被加入的block
__CFRunLoopDoBlocks(runloop, currentMode);
/// 4. RunLoop 触发 Source0 (非port) 回调。
sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle);
/// 执行被加入的block
__CFRunLoopDoBlocks(runloop, currentMode);
/// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
if (__Source0DidDispatchPortLastTime) {
Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg)
if (hasMsg) goto handle_msg;
}
/// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
if (!sourceHandledThisLoop) {
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);
}
/// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
/// • 一个基于 port 的Source 的事件。
/// • 一个 Timer 到时间了
/// • RunLoop 自身的超时时间到了
/// • 被其他什么调用者手动唤醒
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) {
mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg
}
/// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting);
/// 收到消息,处理消息。
handle_msg:
/// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
if (msg_is_timer) {
__CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())
}
/// 9.2 如果有dispatch到main_queue的block,执行block。
else if (msg_is_dispatch) {
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
}
/// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
else {
CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort);
sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg);
if (sourceHandledThisLoop) {
mach_msg(reply, MACH_SEND_MSG, reply);
}
}
/// 执行加入到Loop的block
__CFRunLoopDoBlocks(runloop, currentMode);
if (sourceHandledThisLoop && stopAfterHandle) {
/// 进入loop时参数说处理完事件就返回。
retVal = kCFRunLoopRunHandledSource;
} else if (timeout) {
/// 超出传入参数标记的超时时间了
retVal = kCFRunLoopRunTimedOut;
} else if (__CFRunLoopIsStopped(runloop)) {
/// 被外部调用者强制停止了
retVal = kCFRunLoopRunStopped;
} else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) {
/// source/timer/observer一个都没有了
retVal = kCFRunLoopRunFinished;
}
/// 如果没超时,mode里没空,loop也没被停止,那继续loop。
} while (retVal == 0);
}
/// 10. 通知 Observers: RunLoop 即将退出。
__CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
}
RunLoop 的底层实现
从上面代码可以看到,RunLoop
的核心是基于 mach port
的,其进入休眠时调用的函数是 mach_msg()
。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS
的系统架构。
苹果官方将整个系统大致划分为上述4个层次: 应用层包括用户能接触到的图形应用,例如 Spotlight
、Aqua
、SpringBoard
等。 应用框架层即开发人员接触到的 Cocoa
等框架。 核心框架层包括各种核心框架、OpenGL
等内容。 Darwin
即操作系统的核心,包括系统内核、驱动、Shell
等内容,这一层是开源的,其所有源码都可以在 opensource.apple.com 里找到。
我们在深入看一下 Darwin 这个核心的架构:
其中,在硬件层上面的三个组成部分:Mach
、BSD
、IOKit
(还包括一些上面没标注的内容),共同组成了 XNU
内核。 XNU
内核的内环被称作 Mach
,其作为一个微内核,仅提供了诸如处理器调度、IPC
(进程间通信)等非常少量的基础服务。
BSD
层可以看作围绕 Mach
层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。
IOKit
层是为设备驱动提供了一个面向对象(C++
)的一个框架。
Mach
本身提供的 API
非常有限,而且苹果也不鼓励使用 Mach
的 API
,但是这些API
非常基础,如果没有这些API
的话,其他任何工作都无法实施。在 Mach
中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为”对象”。和其他架构不同, Mach
的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。”消息
”是 Mach
中最基础的概念,消息在两个端口 (port
) 之间传递,这就是 Mach
的 IPC
(进程间通信) 的核心。
Mach
的消息定义是在 <mach/message.h>
头文件的,很简单:
1
2
3
4
5
6
7
8
9
10
11
12
13
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
} mach_msg_base_t;
typedef struct {
mach_msg_bits_t msgh_bits;
mach_msg_size_t msgh_size;
mach_port_t msgh_remote_port;
mach_port_t msgh_local_port;
mach_port_name_t msgh_voucher_port;
mach_msg_id_t msgh_id;
} mach_msg_header_t;
一条 Mach
消息实际上就是一个二进制数据包 (BLOB
),其头部定义了当前端口 local_port
和目标端口 remote_port
,发送和接受消息是通过同一个 API
进行的,其 option
标记了消息传递的方向:
1
2
3
4
5
6
7
8
mach_msg_return_t mach_msg(
mach_msg_header_t *msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_name_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_name_t notify);
为了实现消息的发送和接收,mach_msg()
函数实际上是调用了一个 Mach
陷阱 (trap)
,即函数mach_msg_trap()
,陷阱这个概念在 Mach
中等同于系统调用。当你在用户态调用mach_msg_trap()
时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg()
函数会完成实际的工作,如下图:
这些概念可以参考维基百科: System_call、Trap_(computing)。
RunLoop
的核心就是一个 mach_msg()
(见上面代码的第7步),RunLoop
调用这个函数去接收消息,如果没有别人发送 port
消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS
的 App
,然后在 App
静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap()
这个地方。
关于具体的如何利用 mach port
发送信息,可以看看 NSHipster 这一篇文章,或者这里的中文翻译.
关于Mach
的历史可以看看这篇很有趣的文章:Mac OS X 背后的故事(三)Mach 之父 Avie Tevanian。
苹果用 RunLoop 实现的功能
首先我们可以看一下App
启动后RunLoop
的状态:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
CFRunLoop {
current mode = kCFRunLoopDefaultMode
common modes = {
UITrackingRunLoopMode
kCFRunLoopDefaultMode
}
common mode items = {
// source0 (manual)
CFRunLoopSource {order =-1, {
callout = _UIApplicationHandleEventQueue}}
CFRunLoopSource {order =-1, {
callout = PurpleEventSignalCallback }}
CFRunLoopSource {order = 0, {
callout = FBSSerialQueueRunLoopSourceHandler}}
// source1 (mach port)
CFRunLoopSource {order = 0, {port = 17923}}
CFRunLoopSource {order = 0, {port = 12039}}
CFRunLoopSource {order = 0, {port = 16647}}
CFRunLoopSource {order =-1, {
callout = PurpleEventCallback}}
CFRunLoopSource {order = 0, {port = 2407,
callout = _ZL20notify_port_callbackP12__CFMachPortPvlS1_}}
CFRunLoopSource {order = 0, {port = 1c03,
callout = __IOHIDEventSystemClientAvailabilityCallback}}
CFRunLoopSource {order = 0, {port = 1b03,
callout = __IOHIDEventSystemClientQueueCallback}}
CFRunLoopSource {order = 1, {port = 1903,
callout = __IOMIGMachPortPortCallback}}
// Ovserver
CFRunLoopObserver {order = -2147483647, activities = 0x1, // Entry
callout = _wrapRunLoopWithAutoreleasePoolHandler}
CFRunLoopObserver {order = 0, activities = 0x20, // BeforeWaiting
callout = _UIGestureRecognizerUpdateObserver}
CFRunLoopObserver {order = 1999000, activities = 0xa0, // BeforeWaiting | Exit
callout = _afterCACommitHandler}
CFRunLoopObserver {order = 2000000, activities = 0xa0, // BeforeWaiting | Exit
callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
CFRunLoopObserver {order = 2147483647, activities = 0xa0, // BeforeWaiting | Exit
callout = _wrapRunLoopWithAutoreleasePoolHandler}
// Timer
CFRunLoopTimer {firing = No, interval = 3.1536e+09, tolerance = 0,
next fire date = 453098071 (-4421.76019 @ 96223387169499),
callout = _ZN2CAL14timer_callbackEP16__CFRunLoopTimerPv (QuartzCore.framework)}
},
modes = {
CFRunLoopMode {
sources0 = { /* same as 'common mode items' */ },
sources1 = { /* same as 'common mode items' */ },
observers = { /* same as 'common mode items' */ },
timers = { /* same as 'common mode items' */ },
},
CFRunLoopMode {
sources0 = { /* same as 'common mode items' */ },
sources1 = { /* same as 'common mode items' */ },
observers = { /* same as 'common mode items' */ },
timers = { /* same as 'common mode items' */ },
},
CFRunLoopMode {
sources0 = {
CFRunLoopSource {order = 0, {
callout = FBSSerialQueueRunLoopSourceHandler}}
},
sources1 = (null),
observers = {
CFRunLoopObserver >{activities = 0xa0, order = 2000000,
callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
)},
timers = (null),
},
CFRunLoopMode {
sources0 = {
CFRunLoopSource {order = -1, {
callout = PurpleEventSignalCallback}}
},
sources1 = {
CFRunLoopSource {order = -1, {
callout = PurpleEventCallback}}
},
observers = (null),
timers = (null),
},
CFRunLoopMode {
sources0 = (null),
sources1 = (null),
observers = (null),
timers = (null),
}
}
}
可以看到,系统默认注册了5个`Mode:
kCFRunLoopDefaultMode
:App
的默认Mode
,通常主线程是在这个Mode
下运行的。UITrackingRunLoopMode
: 界面跟踪Mode
,用于ScrollView
追踪触摸滑动,保证界面滑动时不受其他Mode
影响。UIInitializationRunLoopMode
: 在刚启动App
时第进入的第一个Mode
,启动完成后就不再使用。GSEventReceiveRunLoopMode
: 接受系统事件的内部Mode
,通常用不到。kCFRunLoopCommonModes
: 这是一个占位的Mode
,没有实际作用。
你可以在这里看到更多的苹果内部的 Mode
,但那些 Mode
在开发中就很难遇到了。
当 RunLoop
进行回调时,一般都是通过一个很长的函数调用出去 (call out
), 当你在你的代码中下断点调试时,通常能在调用栈上看到这些函数。下面是这几个函数的整理版本,如果你在调用栈中看到这些长函数名,在这里查找一下就能定位到具体的调用地点了:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
{
/// 1. 通知Observers,即将进入RunLoop
/// 此处有Observer会创建AutoreleasePool: _objc_autoreleasePoolPush();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopEntry);
do {
/// 2. 通知 Observers: 即将触发 Timer 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers);
/// 3. 通知 Observers: 即将触发 Source (非基于port的,Source0) 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources);
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
/// 4. 触发 Source0 (非基于port的) 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0);
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
/// 6. 通知Observers,即将进入休眠
/// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting);
/// 7. sleep to wait msg.
mach_msg() -> mach_msg_trap();
/// 8. 通知Observers,线程被唤醒
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting);
/// 9. 如果是被Timer唤醒的,回调Timer
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer);
/// 9. 如果是被dispatch唤醒的,执行所有调用 dispatch_async 等方法放入main queue 的 block
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block);
/// 9. 如果如果Runloop是被 Source1 (基于port的) 的事件唤醒了,处理这个事件
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1);
} while (...);
/// 10. 通知Observers,即将退出RunLoop
/// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit);
}
AutoreleasePool
App启动后,苹果在主线程 RunLoop
里注册了两个 Observer
,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()
。
第一个 Observer
监视的事件是 Entry
(即将进入Loop
),其回调内会调用 _objc_autoreleasePoolPush()
创建自动释放池。其 order
是-2147483647
,优先级最高,保证创建释放池发生在其他所有回调之前。
第二个 Observer
监视了两个事件: BeforeWaiting
(准备进入休眠) 时调用_objc_autoreleasePoolPop()
和 _objc_autoreleasePoolPush()
释放旧的池并创建新池;Exit
(即将退出Loop
) 时调用 _objc_autoreleasePoolPop()
来释放自动释放池。这个 Observer
的 order
是 2147483647
,优先级最低,保证其释放池子发生在其他所有回调之后。
在主线程执行的代码,通常是写在诸如事件回调、Timer
回调内的。这些回调会被 RunLoop
创建好的 AutoreleasePool
环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool
了。
事件响应
苹果注册了一个 Source1
(基于 mach port
的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()
。
当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent
事件并由 SpringBoard
接收。这个过程的详细情况可以参考这里。SpringBoard
只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event
,随后用 mach port
转发给需要的App
进程。随后苹果注册的那个 Source1
就会触发回调,并调用 _UIApplicationHandleEventQueue()
进行应用内部的分发。
_UIApplicationHandleEventQueue()
会把 IOHIDEvent
处理并包装成 UIEvent
进行处理或分发,其中包括识别 UIGesture
/处理屏幕旋转
/发送给 UIWindow
等。通常事件比如 UIButton
点击、touchesBegin
/Move
/End
/Cancel
事件都是在这个回调中完成的。
手势识别
当上面的 _UIApplicationHandleEventQueue()
识别了一个手势时,其首先会调用 Cancel
将当前的 touchesBegin
/Move
/End
系列回调打断。随后系统将对应的 UIGestureRecognizer
标记为待处理。
苹果注册了一个 Observer
监测 BeforeWaiting
(Loop
即将进入休眠) 事件,这个Observer
的回调函数是 _UIGestureRecognizerUpdateObserver()
,其内部会获取所有刚被标记为待处理的 GestureRecognizer
,并执行GestureRecognizer
的回调。
当有 UIGestureRecognizer
的变化(创建
/销毁
/状态改变
)时,这个回调都会进行相应处理。
界面更新
当在操作 UI
时,比如改变了 Frame
、更新了 UIView
/CALayer
的层次时,或者手动调用了 UIView
/CALayer
的 setNeedsLayout
/setNeedsDisplay
方法后,这个 UIView
/CALayer
就被标记为待处理,并被提交到一个全局的容器去。
苹果注册了一个 Observer
监听 BeforeWaiting
(即将进入休眠) 和 Exit
(即将退出Loop
) 事件,回调去执行一个很长的函数: _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()
。这个函数里会遍历所有待处理的 UIView
/CAlayer
以执行实际的绘制和调整,并更新 UI
界面。
这个函数内部的调用栈大概是这样的:
1
2
3
4
5
6
7
8
9
10
11
12
_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()
QuartzCore:CA::Transaction::observer_callback:
CA::Transaction::commit();
CA::Context::commit_transaction();
CA::Layer::layout_and_display_if_needed();
CA::Layer::layout_if_needed();
[CALayer layoutSublayers];
[UIView layoutSubviews];
CA::Layer::display_if_needed();
[CALayer display];
[UIView drawRect];
定时器
NSTimer
其实就是 CFRunLoopTimerRef
,他们之间是 toll-free bridged
的。一个 NSTimer
注册到 RunLoop
后,RunLoop
会为其重复的时间点注册好事件。例如 10:00
, 10:10
, 10:20
这几个时间点。RunLoop
为了节省资源,并不会在非常准确的时间点回调这个Timer
。Timer
有个属性叫做 Tolerance
(宽容度),标示了当时间点到后,容许有多少最大误差。
如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就比如等公交,如果 10:10
时我忙着玩手机错过了那个点的公交,那我只能等 10:20
这一趟了。
CADisplayLink
是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer
并不一样,其内部实际是操作了一个 Source
)。如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer
相似),造成界面卡顿的感觉。在快速滑动TableView
时,即使一帧的卡顿也会让用户有所察觉。Facebook
开源的AsyncDisplayLink
就是为了解决界面卡顿的问题,其内部也用到了 RunLoop
,这个稍后我会再单独写一页博客来分析。
PerformSelecter
当调用 NSObject
的 performSelecter:afterDelay:
后,实际上其内部会创建一个 Timer
并添加到当前线程的 RunLoop
中。所以如果当前线程没有 RunLoop
,则这个方法会失效。
当调用 performSelector:onThread:
时,实际上其会创建一个 Timer
加到对应的线程去,同样的,如果对应线程没有 RunLoop
该方法也会失效。
关于GCD
实际上 RunLoop
底层也会用到 GCD 的东西, 例如 dispatch_async()
。
NSTimer 是用了 XNU 内核的
mk_timer
来驱动的,而非 GCD 驱动的.
当调用 dispatch_async(dispatch_get_main_queue(), block)
时,libDispatch
会向主线程的 RunLoop
发送消息,RunLoop会被唤醒,并从消息中取得这个 block
,并在回调 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__()
里执行这个 block
。但这个逻辑仅限于 dispatch
到主线程,dispatch
到其他线程仍然是由 libDispatch
处理的。
关于网络请求
iOS 中,关于网络请求的接口自下至上有如下几层:
1
2
3
4
CFSocket
CFNetwork ->ASIHttpRequest
NSURLConnection ->AFNetworking
NSURLSession ->AFNetworking2, Alamofire
CFSocket
是最底层的接口,只负责socket
通信。CFNetwork
是基于CFSocket
等接口的上层封装,ASIHttpRequest
工作于这一层。NSURLConnection
是基于CFNetwork
的更高层的封装,提供面向对象的接口,AFNetworking
工作于这一层。NSURLSession
是iOS7
中新增的接口,表面上是和NSURLConnection
并列的,但底层仍然用到了NSURLConnection
的部分功能 (比如com.apple.NSURLConnectionLoader
线程),AFNetworking2
和Alamofire
工作于这一层。
下面主要介绍下 NSURLConnection 的工作过程。
通常使用 NSURLConnection
时,你会传入一个 Delegate
,当调用了 [connection start]
后,这个 Delegate
就会不停收到事件回调。实际上,start
这个函数的内部会会获取 CurrentRunLoop
,然后在其中的 DefaultMode
添加了4个 Source0
(即需要手动触发的Source
)。CFMultiplexerSource
是负责各种 Delegate
回调的,CFHTTPCookieStorage
是处理各种 Cookie
的。
当开始网络传输时,我们可以看到 NSURLConnection
创建了两个新线程:com.apple.NSURLConnectionLoader
和 com.apple.CFSocket.private
。其中 CFSocket
线程是处理底层 socket
连接的。NSURLConnectionLoader
这个线程内部会使用 RunLoop
来接收底层 socket
的事件,并通过之前添加的 Source0
通知到上层的 Delegate
。
NSURLConnectionLoader
中的 RunLoop
通过一些基于 mach port
的Source
接收来自底层 CFSocket
的通知。当收到通知后,其会在合适的时机向 CFMultiplexerSource
等 Source0
发送通知,同时唤醒 Delegate
线程的 RunLoop
来让其处理这些通知。CFMultiplexerSource
会在 Delegate
线程的 RunLoop
对 Delegate
执行实际的回调。
RunLoop 的实际应用举例
AFNetworking
AFURLConnectionOperation 这个类是基于 NSURLConnection
构建的,其希望能在后台线程接收 Delegate
回调。为此 AFNetworking
单独创建了一个线程,并在这个线程中启动了一个 RunLoop
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
+ (void)networkRequestThreadEntryPoint:(id)__unused object {
@autoreleasepool {
[[NSThread currentThread] setName:@"AFNetworking"];
NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
[runLoop addPort:[NSMachPort port] forMode:NSDefaultRunLoopMode];
[runLoop run];
}
}
+ (NSThread *)networkRequestThread {
static NSThread *_networkRequestThread = nil;
static dispatch_once_t oncePredicate;
dispatch_once(&oncePredicate, ^{
_networkRequestThread = [[NSThread alloc] initWithTarget:self selector:@selector(networkRequestThreadEntryPoint:) object:nil];
[_networkRequestThread start];
});
return _networkRequestThread;
}
RunLoop
启动前内部必须要有至少一个 Timer
/Observer
/Source
,所以 AFNetworking
在 [runLoop run]
之前先创建了一个新的 NSMachPort
添加进去了。通常情况下,调用者需要持有这个 NSMachPort
(mach_port
) 并在外部线程通过这个 port
发送消息到 loop
内;但此处添加 port
只是为了让 RunLoop
不至于退出,并没有用于实际的发送消息。
1
2
3
4
5
6
7
8
9
10
- (void)start {
[self.lock lock];
if ([self isCancelled]) {
[self performSelector:@selector(cancelConnection) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
} else if ([self isReady]) {
self.state = AFOperationExecutingState;
[self performSelector:@selector(operationDidStart) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
}
[self.lock unlock];
}
当需要这个后台线程执行任务时,AFNetworking
通过调用 [NSObject performSelector:onThread:..]
将这个任务扔到了后台线程的 RunLoop
中。
AsyncDisplayKit
AsyncDisplayKit 是 Facebook 推出的用于保持界面流畅性的框架,其原理大致如下:
UI
线程中一旦出现繁重的任务就会导致界面卡顿,这类任务通常分为3类:排版
,绘制
,UI对象操作
。
排版通常包括计算视图大小、计算文本高度、重新计算子式图的排版等操作。 绘制一般有文本绘制 (例如 CoreText
)、图片绘制 (例如预先解压)、元素绘制 (Quartz
)等操作。 UI
对象操作通常包括 UIView
/CALayer
等 UI 对象的创建、设置属性和销毁。
其中前两类操作可以通过各种方法扔到后台线程执行,而最后一类操作只能在主线程完成,并且有时后面的操作需要依赖前面操作的结果 (例如TextView
创建时可能需要提前计算出文本的大小)。ASDK
所做的,就是尽量将能放入后台的任务放入后台,不能的则尽量推迟 (例如视图的创建、属性的调整)。
为此,ASDK
创建了一个名为 ASDisplayNode
的对象,并在内部封装了 UIView
/CALayer
,它具有和 UIView
/CALayer
相似的属性,例如 frame
、backgroundColor
等。所有这些属性都可以在后台线程更改,开发者可以只通过 Node
来操作其内部的 UIView
/CALayer
,这样就可以将排版和绘制放入了后台线程。但是无论怎么操作,这些属性总需要在某个时刻同步到主线程的 UIView
/CALayer
去。
ASDK
仿照 QuartzCore
/UIKit
框架的模式,实现了一套类似的界面更新的机制:即在主线程的 RunLoop
中添加一个 Observer
,监听了 kCFRunLoopBeforeWaiting
和 kCFRunLoopExit
事件,在收到回调时,遍历所有之前放入队列的待处理的任务,然后一一执行。 具体的代码可以看这里:_ASAsyncTransactionGroup。
最后
RunLoop
需要深入理解
全文完